Project Workflows & Best Practices

Sustainable AI-Assisted Development

4 min read

AI tools are powerful, but overreliance creates risks. This final lesson covers sustainable practices for long-term success with vibe coding.

The Sustainability Balance

┌─────────────────────────────────────────────────────────────┐
│                 AI Assistance Spectrum                      │
├─────────────────────────────────────────────────────────────┤
│                                                             │
│  Under-use          Balanced           Over-reliance        │
│      │                  │                    │              │
│      ▼                  ▼                    ▼              │
│  ┌───────┐         ┌───────┐          ┌───────┐            │
│  │ Slow  │         │Optimal│          │Fragile│            │
│  │ Work  │         │ Flow  │          │ Code  │            │
│  └───────┘         └───────┘          └───────┘            │
│                                                             │
│  • Miss productivity  • AI handles    • Can't debug        │
│    gains               repetitive     • Blind spots        │
│  • Slower delivery   • Human handles  • Technical debt     │
│  • Fatigue            complex        • Skills atrophy      │
│                      • Skills grow                         │
└─────────────────────────────────────────────────────────────┘

Maintaining Core Skills

Skills to Practice Without AI

Weekly practice (even if AI could do it):
├── Write a function from scratch
├── Debug using console.log or debugger
├── Read and understand unfamiliar code
├── Write tests before implementation
└── Design a data structure

The 80/20 Rule

Use AI for (~80%):
├── Boilerplate code
├── Repetitive patterns
├── Documentation
├── Test generation
├── Refactoring

Do manually (~20%):
├── Architecture decisions
├── Complex debugging
├── Performance optimization
├── Security implementation
├── Critical business logic

Technical Debt Management

AI Can Create Technical Debt

Common AI debt sources:

  • Over-engineered solutions
  • Inconsistent patterns
  • Unused code generated "just in case"
  • Missing tests for edge cases
  • Poor error messages

Debt Prevention Practices

Before accepting AI code:
├── Is this the simplest solution?
├── Does it match existing patterns?
├── Will future me understand this?
├── Is everything generated actually used?
└── Are error messages helpful?

Regular Debt Audits

# Schedule regular code health checks

# Find unused exports
npx ts-prune

# Find code complexity issues
npx eslint --rule 'complexity: ["error", 10]'

# Find duplicate code
npx jscpd ./src

# Check test coverage
npm test -- --coverage

Cost Management

Monitoring AI Costs

// Track AI tool costs
interface MonthlyCosts {
  cursor: number;      // $20-60/month
  anthropicApi: number; // Variable
  copilot: number;     // $10-39/month
  devinAcu: number;    // Pay per use
}

// Calculate ROI
function calculateROI(costs: MonthlyCosts, hoursSaved: number, hourlyRate: number): number {
  const totalCost = Object.values(costs).reduce((a, b) => a + b, 0);
  const valueSaved = hoursSaved * hourlyRate;
  return ((valueSaved - totalCost) / totalCost) * 100;
}

Cost Optimization Tips

Reduce costs:
├── Use cheaper models for simple tasks
├── Batch similar requests
├── Cache common prompts/responses
├── Use free tiers strategically
└── Monitor token usage

Long-term Maintainability

Documentation for AI Code

/**
 * Calculates user engagement score.
 *
 * @ai-generated Cursor Composer, 2026-01-06
 * @ai-reviewed Human review completed
 *
 * Logic: Weighted average of activity metrics
 * - Login frequency: 40%
 * - Feature usage: 35%
 * - Session duration: 25%
 *
 * @param user - User object with activity data
 * @returns Engagement score 0-100
 */
function calculateEngagementScore(user: User): number {
  // Implementation...
}

Future-Proofing

Make AI code maintainable:
├── Add comments explaining "why"
├── Use descriptive variable names
├── Keep functions focused and small
├── Write tests that explain behavior
└── Document edge cases

Avoiding Anti-Patterns

Anti-Pattern 1: Cargo Cult Coding

// ❌ Using AI code you don't understand
const result = await someLibrary.complexOperation({
  options: { flag: true, mode: 'advanced' }
});
// "It works, I don't know why"

// ✅ Understand before using
// First: Ask AI to explain the code
// Then: Understand each parameter
// Finally: Use with confidence

Anti-Pattern 2: AI Dependency

// ❌ Can't code without AI
"I need AI to write even simple functions"

// ✅ AI enhances, doesn't replace
"I can write this, but AI makes it faster"

Anti-Pattern 3: Blind Trust

// ❌ Accept without review
await ai.generate("Create user auth")
// Click "Apply All" immediately

// ✅ Review everything
await ai.generate("Create user auth")
// Read each line
// Check security implications
// Test edge cases
// Then apply

Building Healthy Habits

Daily Practices

Morning:
├── Review yesterday's AI code with fresh eyes
├── Run tests before starting new work
└── Update .cursorrules if patterns emerged

During work:
├── Commit frequently
├── Take breaks from AI (manual coding time)
└── Document decisions as you go

End of day:
├── Review all AI code generated
├── Clean up unused generated code
└── Note any patterns for tomorrow

Weekly Practices

├── Code review without AI assistance
├── Practice debugging manually
├── Update prompt library
├── Review AI costs
└── Share learnings with team

Monthly Practices

├── Audit technical debt
├── Review and update AI configurations
├── Assess skill maintenance
├── Evaluate tool effectiveness
└── Plan training/learning

Course Conclusion

Congratulations on completing Vibe Coding Fundamentals!

What You've Learned

Module 1: AI Coding Landscape
└── Tools, trends, and choosing wisely

Module 2: Cursor Deep Dive
└── Composer, Agent, Tab completion

Module 3: Claude Code & CLI
└── Terminal workflows, checkpoints, MCP

Module 4: Effective Prompting
└── CRISPE framework, advanced techniques

Module 5: Debugging AI Code
└── Review, common bugs, strategies

Module 6: Project Workflows
└── Git, teams, sustainability

Your Path Forward

Next Steps:
├── Practice daily with real projects
├── Build your prompt library
├── Experiment with different tools
├── Contribute to team standards
└── Stay current with AI developments

Final Wisdom

The Vibe Coder's Mindset:

AI tools are like power tools in a workshop. A master carpenter doesn't just know how to use a power saw—they know when to use hand tools, how to maintain their equipment, and most importantly, how to craft something beautiful.

Vibe coding at its best is not about generating code fast. It's about amplifying your creativity, eliminating tedium, and shipping better software. The human remains the craftsperson; AI is the best apprentice you've ever had.

Thank you for completing this course. Now go build something amazing! :::

Quiz

Module 6: Project Workflows & Best Practices

Take Quiz