Building Your ML Portfolio
Documentation Best Practices
5 min read
README Template for ML Projects
# Project Title
Brief description (1-2 sentences)
## Problem Statement
What problem does this solve? Why does it matter?
## Dataset
- Source: Kaggle, UCI ML Repository, etc.
- Size: 10K samples, 50 features
- Target variable: Classification/Regression
## Architecture
- Model: XGBoost, LSTM, Transformer, etc.
- Framework: PyTorch, TensorFlow, scikit-learn
- Deployment: FastAPI + Docker
## Results
| Metric | Score |
|--------|-------|
| Accuracy | 92.5% |
| Precision | 90.1% |
| Recall | 94.3% |
| F1 Score | 92.2% |
## Setup
```bash
pip install -r requirements.txt
python train.py
python app.py
Demo
[Live Demo Link] or [Screenshot/GIF]
Future Improvements
- Add real-time monitoring
- Implement A/B testing
- Scale to handle 1M+ requests/day
## Code Comments Best Practices
**Good Comments:**
```python
def preprocess_text(text: str) -> List[str]:
"""
Clean and tokenize input text for NLP model.
Args:
text: Raw input string
Returns:
List of cleaned tokens
"""
# Remove URLs and mentions
text = re.sub(r'http\S+|@\S+', '', text)
# Tokenize and lowercase
tokens = text.lower().split()
return tokens
Bad Comments:
# This function processes text
def process(t):
t = t.lower() # make lowercase
return t.split() # split into words
:::