The Future of Agents
Agent-to-Agent Ecosystems
3 min read
The future isn't one super-agent. It's networks of specialized agents that discover, negotiate, and collaborate autonomously.
The Ecosystem Vision
┌─────────────────────────────────────────────────────────┐
│ Agent Marketplace │
├─────────────────────────────────────────────────────────┤
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐│
│ │ Code │ │ Research │ │ Data │ │ Security ││
│ │ Agent │ │ Agent │ │ Agent │ │ Agent ││
│ └────┬─────┘ └────┬─────┘ └────┬─────┘ └────┬─────┘│
│ │ │ │ │ │
│ └─────────────┴─────────────┴─────────────┘ │
│ │ │
│ ┌──────────┴──────────┐ │
│ │ Discovery Layer │ │
│ │ (Agent Registry) │ │
│ └─────────────────────┘ │
└─────────────────────────────────────────────────────────┘
Agent Discovery Protocol
Agents advertise their capabilities and find collaborators:
from dataclasses import dataclass
@dataclass
class AgentCapability:
name: str
description: str
input_schema: dict
output_schema: dict
cost_per_call: float
avg_latency_ms: int
success_rate: float
class AgentRegistry:
def __init__(self):
self.agents = {} # agent_id -> AgentInfo
self.capabilities = {} # capability_name -> [agent_ids]
def register_agent(self, agent_id: str, capabilities: list[AgentCapability]):
"""Register an agent and its capabilities."""
self.agents[agent_id] = {
"capabilities": capabilities,
"registered_at": datetime.now(),
"status": "active"
}
for cap in capabilities:
self.capabilities.setdefault(cap.name, []).append(agent_id)
def discover_agents(self, capability_needed: str, constraints: dict = None) -> list[str]:
"""Find agents that can fulfill a capability."""
candidates = self.capabilities.get(capability_needed, [])
if constraints:
# Filter by constraints
filtered = []
for agent_id in candidates:
agent = self.agents[agent_id]
cap = next(c for c in agent["capabilities"] if c.name == capability_needed)
if constraints.get("max_cost") and cap.cost_per_call > constraints["max_cost"]:
continue
if constraints.get("max_latency") and cap.avg_latency_ms > constraints["max_latency"]:
continue
if constraints.get("min_success") and cap.success_rate < constraints["min_success"]:
continue
filtered.append(agent_id)
return filtered
return candidates
Agent Communication Protocol
Standardized messages for agent collaboration:
@dataclass
class AgentMessage:
sender: str
recipient: str
message_type: str # "request", "response", "negotiate", "delegate"
payload: dict
correlation_id: str
timestamp: datetime
class AgentCommunicator:
def __init__(self, agent_id: str, registry: AgentRegistry):
self.agent_id = agent_id
self.registry = registry
self.pending_requests = {}
async def request_collaboration(
self,
capability: str,
task: dict,
budget: float = None
) -> dict:
"""Request help from another agent."""
# Find capable agents
candidates = self.registry.discover_agents(
capability,
constraints={"max_cost": budget} if budget else None
)
if not candidates:
return {"error": f"No agents found for capability: {capability}"}
# Select best candidate (could be more sophisticated)
target_agent = candidates[0]
# Send request
message = AgentMessage(
sender=self.agent_id,
recipient=target_agent,
message_type="request",
payload={"capability": capability, "task": task, "budget": budget},
correlation_id=str(uuid.uuid4()),
timestamp=datetime.now()
)
response = await self.send_and_wait(message)
return response
async def handle_request(self, message: AgentMessage) -> AgentMessage:
"""Handle incoming collaboration request."""
task = message.payload["task"]
budget = message.payload.get("budget")
# Estimate cost
estimated_cost = self.estimate_task_cost(task)
if budget and estimated_cost > budget:
# Negotiate
return AgentMessage(
sender=self.agent_id,
recipient=message.sender,
message_type="negotiate",
payload={
"required_budget": estimated_cost,
"reason": "Task complexity exceeds offered budget"
},
correlation_id=message.correlation_id,
timestamp=datetime.now()
)
# Execute and respond
result = await self.execute_task(task)
return AgentMessage(
sender=self.agent_id,
recipient=message.sender,
message_type="response",
payload={"result": result, "cost": estimated_cost},
correlation_id=message.correlation_id,
timestamp=datetime.now()
)
Delegation Chains
Agents that delegate sub-tasks to specialists:
class DelegatingAgent:
def __init__(self, agent_id: str, communicator: AgentCommunicator):
self.agent_id = agent_id
self.communicator = communicator
async def execute_complex_task(self, task: dict) -> dict:
"""Break down and delegate complex tasks."""
# Analyze task and identify sub-tasks
subtasks = await self.decompose_task(task)
results = {}
for subtask in subtasks:
if self.can_handle(subtask):
# Handle locally
results[subtask["id"]] = await self.handle_locally(subtask)
else:
# Delegate to specialist
capability_needed = subtask["required_capability"]
result = await self.communicator.request_collaboration(
capability=capability_needed,
task=subtask,
budget=subtask.get("budget")
)
results[subtask["id"]] = result
# Combine results
return await self.combine_results(task, results)
Trust and Reputation
Track agent reliability over time:
class ReputationSystem:
def __init__(self):
self.interactions = {} # agent_id -> [interaction records]
self.reputation_scores = {}
def record_interaction(
self,
agent_id: str,
success: bool,
response_time_ms: int,
cost_accuracy: float # actual vs quoted
):
"""Record an interaction with an agent."""
self.interactions.setdefault(agent_id, []).append({
"timestamp": datetime.now(),
"success": success,
"response_time_ms": response_time_ms,
"cost_accuracy": cost_accuracy
})
self.update_reputation(agent_id)
def update_reputation(self, agent_id: str):
"""Calculate reputation score from recent interactions."""
recent = self.interactions[agent_id][-50:] # Last 50
if len(recent) < 5:
self.reputation_scores[agent_id] = 0.5 # Neutral for new agents
return
success_rate = sum(1 for i in recent if i["success"]) / len(recent)
avg_cost_accuracy = sum(i["cost_accuracy"] for i in recent) / len(recent)
# Weighted score
self.reputation_scores[agent_id] = (
0.7 * success_rate +
0.3 * avg_cost_accuracy
)
def get_trusted_agents(self, capability: str, min_reputation: float = 0.8) -> list[str]:
"""Get highly-rated agents for a capability."""
candidates = registry.discover_agents(capability)
return [
a for a in candidates
if self.reputation_scores.get(a, 0.5) >= min_reputation
]
Nerd Note: Agent ecosystems need economic incentives to work. Why would an agent help another? Token rewards, reputation gains, reciprocal services. The game theory matters.
Next: Patterns emerging from production deployments. :::