ML Workflow Orchestration
Pipeline Concepts
3 min read
ML pipelines automate the flow from raw data to deployed model. Understanding pipeline fundamentals helps you choose the right orchestration tool.
What is an ML Pipeline?
An ML pipeline is a sequence of automated steps:
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Ingest │───▶│ Transform │───▶│ Validate │
│ Data │ │ Data │ │ Data │
└─────────────┘ └─────────────┘ └─────────────┘
│
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Deploy │◀───│ Evaluate │◀───│ Train │
│ Model │ │ Model │ │ Model │
└─────────────┘ └─────────────┘ └─────────────┘
DAG: The Core Abstraction
Pipelines are modeled as Directed Acyclic Graphs (DAGs):
- Directed: Tasks flow in one direction
- Acyclic: No circular dependencies
- Graph: Tasks (nodes) connected by dependencies (edges)
# Conceptual DAG structure
dag = {
"ingest": [], # No dependencies
"transform": ["ingest"], # Depends on ingest
"validate": ["transform"], # Depends on transform
"train": ["validate"], # Depends on validate
"evaluate": ["train"], # Depends on train
"deploy": ["evaluate"] # Depends on evaluate
}
Key Pipeline Components
| Component | Purpose | Example |
|---|---|---|
| Task | Single unit of work | Train model, validate data |
| Dependency | Order of execution | Train after validate |
| Trigger | What starts the pipeline | Schedule, data arrival |
| Artifact | Output passed between tasks | Processed dataset, model |
| Parameter | Configuration values | Learning rate, epochs |
Pipeline Patterns
Sequential Pipeline
A ──▶ B ──▶ C ──▶ D
Each step waits for the previous one. Simple but slow.
Parallel Pipeline
┌──▶ B ──┐
A ──┤ ├──▶ D
└──▶ C ──┘
Independent tasks run simultaneously. Faster execution.
Conditional Pipeline
┌──▶ B (if condition)
A ──▶ ◆──┤
└──▶ C (else)
Different paths based on results. Flexible workflows.
Fan-Out/Fan-In
┌──▶ B1 ──┐
│ │
A ──┼──▶ B2 ──┼──▶ C
│ │
└──▶ B3 ──┘
Process data in parallel, then aggregate. Common for distributed training.
ML-Specific Pipeline Stages
Data Pipeline
┌─────────────────────────────────────────────────────────┐
│ Data Pipeline │
├─────────────┬─────────────┬─────────────┬──────────────┤
│ Extract │ Transform │ Validate │ Load │
│ (sources) │ (clean) │ (quality) │ (store) │
└─────────────┴─────────────┴─────────────┴──────────────┘
Training Pipeline
┌─────────────────────────────────────────────────────────┐
│ Training Pipeline │
├─────────────┬─────────────┬─────────────┬──────────────┤
│ Feature │ Train │ Validate │ Register │
│ Engineer │ Model │ Model │ Model │
└─────────────┴─────────────┴─────────────┴──────────────┘
Inference Pipeline
┌─────────────────────────────────────────────────────────┐
│ Inference Pipeline │
├─────────────┬─────────────┬─────────────┬──────────────┤
│ Preprocess │ Load │ Predict │ Postprocess │
│ Input │ Model │ │ Output │
└─────────────┴─────────────┴─────────────┴──────────────┘
Scheduling Strategies
| Strategy | When to Use | Example |
|---|---|---|
| Time-based | Regular intervals | Daily retraining at 2 AM |
| Event-based | On data arrival | New batch file triggers pipeline |
| Manual | Ad-hoc experiments | Triggered by data scientist |
| Continuous | Stream processing | Real-time feature updates |
Orchestration vs Workflow
| Orchestration | Workflow |
|---|---|
| Manages execution | Defines steps |
| Handles failures | Specifies logic |
| Schedules runs | Declares dependencies |
| Monitors progress | Configuration |
Choosing an Orchestrator
| Tool | Best For | Complexity |
|---|---|---|
| DVC | Simple ML pipelines | Low |
| Airflow | Data engineering + ML | Medium |
| Prefect | Modern Python workflows | Medium |
| Kubeflow | Kubernetes-native ML | High |
| Argo Workflows | Generic Kubernetes jobs | High |
Error Handling Patterns
Retry
# Retry failed tasks automatically
task_config = {
"retries": 3,
"retry_delay": "5m"
}
Fallback
# Use alternative path on failure
if model_training_failed:
use_previous_model()
else:
use_new_model()
Alerting
# Notify on failure
on_failure_callback = send_slack_alert
Best Practices
| Practice | Why |
|---|---|
| Idempotent tasks | Safe to retry without side effects |
| Small, focused tasks | Easier to debug and rerun |
| Version everything | Reproduce any pipeline run |
| Log extensively | Debug failures quickly |
| Test locally first | Catch errors before deployment |
Key insight: A well-designed pipeline turns a manual, error-prone process into a reliable, automated system. Start simple, then add complexity as needed.
Next, we'll dive into Kubeflow Pipelines for Kubernetes-native ML orchestration. :::