Model Evaluation & Metrics
Classification Metrics
5 min read
Core Metrics
Confusion Matrix:
Predicted
Pos Neg
Actual Pos TP FN
Neg FP TN
Precision = TP/(TP+FP) - Of predicted positives, how many correct? Recall = TP/(TP+FN) - Of actual positives, how many found? F1 = 2×(P×R)/(P+R) - Harmonic mean of both
Interview Q: "Spam filter - precision or recall?" A: Precision (false positives cost user trust)
Interview Q: "Fraud detection - precision or recall?" A: Recall (missing fraud is worse than false alarms)
ROC-AUC: Binary classification metric, plots TPR vs FPR. AUC=0.5 (random), AUC=1.0 (perfect).
:::