Lesson 22 of 22

Production Deployment

Next Steps

2 min read

Congratulations on completing Local LLM Development with Ollama! You now have the skills to run, customize, and deploy AI models entirely on your own infrastructure.

What You've Learned

┌─────────────────────────────────────────────────────────────────┐
│                   Your New Skills                               │
├─────────────────────────────────────────────────────────────────┤
│                                                                 │
│  ✓ Run local LLMs with Ollama                                   │
│  ✓ Choose the right model for your use case                     │
│  ✓ Customize models with Modelfiles                             │
│  ✓ Build applications with Python and LangChain                 │
│  ✓ Implement local RAG pipelines                                │
│  ✓ Add function calling to local models                         │
│  ✓ Optimize performance with quantization                       │
│  ✓ Deploy with Docker and scale for production                  │
│                                                                 │
└─────────────────────────────────────────────────────────────────┘

Practice Projects

Put your skills to work with these project ideas:

Beginner Projects

  1. Personal Knowledge Base - Build a RAG system over your notes and documents
  2. Code Assistant - Create a local coding helper with deepseek-coder
  3. Meeting Summarizer - Summarize meeting transcripts privately

Intermediate Projects

  1. Multi-Model Chat - Route conversations to specialized models
  2. Document Q&A API - Build a REST API for document queries
  3. Local AI Writing Tool - Create a privacy-focused writing assistant

Advanced Projects

  1. Agentic Workflow System - Build multi-step agents with LangGraph
  2. Self-Hosted AI Platform - Deploy a team-wide Ollama infrastructure
  3. Hybrid Cloud/Local System - Fallback between local and cloud LLMs

Continue Your Learning Path

┌─────────────────────────────────────────────────────────────────┐
│                   Recommended Learning Path                     │
├─────────────────────────────────────────────────────────────────┤
│                                                                 │
│  You are here:                                                  │
│  ┌─────────────────────────────────────┐                       │
│  │ Local LLM Development with Ollama   │ ← COMPLETED!          │
│  └─────────────────────────────────────┘                       │
│                    │                                            │
│                    ▼                                            │
│  ┌─────────────────────────────────────┐                       │
│  │ Fine-tuning LLMs: LoRA & QLoRA      │ ← RECOMMENDED NEXT    │
│  └─────────────────────────────────────┘                       │
│         │                    │                                  │
│         ▼                    ▼                                  │
│  ┌──────────────┐    ┌──────────────────┐                      │
│  │ RAG Systems  │    │ Building AI      │                      │
│  │ Mastery      │    │ Agents           │                      │
│  └──────────────┘    └──────────────────┘                      │
│                                                                 │
└─────────────────────────────────────────────────────────────────┘

While running pre-trained models is powerful, fine-tuning lets you customize models for your specific domain and use cases.

What you'll learn:

  • LoRA and QLoRA techniques for efficient fine-tuning
  • Preparing training data for domain-specific tasks
  • Fine-tuning on consumer hardware (even laptops!)
  • Merging adapters and deploying fine-tuned models
  • Evaluation and iteration strategies

Why fine-tuning matters:

  • Train models on your proprietary data
  • Improve accuracy for specialized tasks
  • Create models that understand your domain vocabulary
  • Reduce inference costs with smaller, specialized models

Stay Connected with the Community

Open Source Projects to Follow

  • Ollama - github.com/ollama/ollama
  • vLLM - github.com/vllm-project/vllm
  • LangChain - github.com/langchain-ai/langchain
  • LangGraph - github.com/langchain-ai/langgraph
  • Hugging Face - huggingface.co

Models to Watch in 2025

  • Llama 4 (Meta) - Next generation open model
  • Mistral Large (Mistral AI) - Enterprise-grade open model
  • DeepSeek V4 - Cost-effective frontier model
  • Qwen 3 (Alibaba) - Strong multilingual capabilities

Quick Reference Card

# Essential Ollama Commands
ollama pull llama3.2          # Download model
ollama run llama3.2           # Interactive chat
ollama list                   # List models
ollama show llama3.2          # Model details
ollama create mymodel -f Modelfile  # Custom model
ollama serve                  # Start server

# API Endpoints
POST /api/generate            # Text generation
POST /api/chat                # Chat completion
POST /api/embed               # Embeddings
GET  /api/tags                # List models

# Environment Variables
OLLAMA_HOST=0.0.0.0:11434    # Bind address
OLLAMA_NUM_GPU=999           # GPU layers
OLLAMA_KEEP_ALIVE=24h        # Model retention

Thank You!

You've taken an important step toward AI sovereignty—the ability to run powerful AI models on your own terms, with complete privacy and control.

The local LLM ecosystem is evolving rapidly. New models, tools, and techniques emerge weekly. Stay curious, keep experimenting, and build amazing things!

Your next step: Enroll in Fine-tuning LLMs: LoRA, QLoRA & PEFT to learn how to customize models for your specific needs. :::

Quiz

Module 6: Production Deployment

Take Quiz