vLLM & Open-Source Inference Engines
Alternative Inference Engines: TGI, OpenLLM & SGLang
3 min read
While vLLM dominates, other engines excel in specific scenarios. Understanding the landscape helps you choose the right tool.
Text Generation Inference (TGI)
Hugging Face's production inference server:
# TGI Docker deployment
docker run --gpus all \
-p 8080:80 \
-v ~/.cache/huggingface:/data \
ghcr.io/huggingface/text-generation-inference:latest \
--model-id meta-llama/Llama-3.3-70B-Instruct \
--num-shard 4
Strengths:
- Native Hugging Face Hub integration
- Built-in quantization (GPTQ, AWQ, GGUF)
- Excellent for Hugging Face ecosystem users
- Grammar-constrained generation
Use cases:
# TGI client usage
from huggingface_hub import InferenceClient
client = InferenceClient("http://localhost:8080")
# Standard generation
response = client.text_generation(
"Explain machine learning:",
max_new_tokens=500,
temperature=0.7,
)
# Grammar-constrained (JSON output)
response = client.text_generation(
"Generate a user profile:",
grammar={
"type": "json",
"value": {"name": "string", "age": "number"}
}
)
SGLang
High-performance engine with RadixAttention for prefix caching:
# SGLang installation
pip install sglang[all]
# Server launch
python -m sglang.launch_server \
--model-path meta-llama/Llama-3.3-70B-Instruct \
--tp 4 \
--port 30000
Key innovation - RadixAttention:
┌─────────────────────────────────────────────────┐
│ RadixAttention (SGLang) │
├─────────────────────────────────────────────────┤
│ │
│ Radix Tree for prefix caching: │
│ │
│ "System: You are" │
│ / \ │
│ "helpful" "expert" │
│ / \ \ │
│ "assistant" "bot" "programmer" │
│ │
│ Automatic prefix matching & sharing │
│ No manual prefix management needed │
│ 2-5x speedup for repeated prefixes │
│ │
└─────────────────────────────────────────────────┘
Frontend DSL:
import sglang as sgl
@sgl.function
def multi_turn_chat(s, user_messages):
s += sgl.system("You are a helpful assistant.")
for msg in user_messages:
s += sgl.user(msg)
s += sgl.assistant(sgl.gen("response", max_tokens=256))
return s
# Automatic KV cache reuse across calls
result = multi_turn_chat.run(
user_messages=["Hello!", "What's the weather?"]
)
OpenLLM
BentoML's LLM serving framework:
# OpenLLM installation
pip install openllm
# Serve model
openllm serve meta-llama/Llama-3.3-70B-Instruct \
--backend vllm \
--quantize int4
Strengths:
- Unified API across backends (vLLM, TGI, GGML)
- Easy model versioning and deployment
- BentoML ecosystem integration
- Multi-model serving
# OpenLLM Python API
import openllm
llm = openllm.LLM("meta-llama/Llama-3.3-70B-Instruct")
# Sync generation
response = llm.generate("Hello, how are you?")
# Async streaming
async for chunk in llm.generate_stream("Write a story:"):
print(chunk, end="")
Engine Comparison
| Feature | vLLM | TGI | SGLang | OpenLLM |
|---|---|---|---|---|
| PagedAttention | ✅ Native | ✅ Yes | ✅ RadixAttn | Via backend |
| Continuous Batching | ✅ Yes | ✅ Yes | ✅ Yes | Via backend |
| Speculative Decode | ✅ Yes | ✅ Yes | ✅ Yes | Limited |
| OpenAI API | ✅ Yes | ✅ Yes | ✅ Yes | ✅ Yes |
| Multi-Modal | ✅ Good | ✅ Good | ✅ Basic | ✅ Basic |
| Quantization | FP8, AWQ, GPTQ | GPTQ, AWQ, GGUF | FP8, AWQ | All |
| Prefix Caching | ✅ Manual | ❌ Limited | ✅ Automatic | Via backend |
| Grammar Constrain | ❌ No | ✅ Yes | ✅ Yes | ✅ Yes |
| Best For | General production | HF ecosystem | Prefix-heavy | Multi-backend |
Decision Framework
┌─────────────────────────────────────────────────────────────┐
│ WHICH ENGINE TO CHOOSE? │
├─────────────────────────────────────────────────────────────┤
│ │
│ START HERE │
│ │ │
│ ▼ │
│ Need maximum throughput? │
│ │ │
│ ├── YES ──► vLLM (default choice) │
│ │ │
│ └── NO ──► Continue... │
│ │ │
│ ▼ │
│ Lots of repeated prefixes? │
│ │ │
│ ├── YES ──► SGLang (RadixAttention) │
│ │ │
│ └── NO ──► Continue... │
│ │ │
│ ▼ │
│ Need JSON/grammar output? │
│ │ │
│ ├── YES ──► TGI │
│ │ │
│ └── NO ──► Continue... │
│ │ │
│ ▼ │
│ HuggingFace ecosystem? │
│ │ │
│ ├── YES ──► TGI│
│ │ │
│ └── NO ──► vLLM│
│ │
└─────────────────────────────────────────────────────────────┘
Hybrid Deployments
Sometimes multiple engines work together:
# Kubernetes: Route by use case
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: llm-router
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /$2
spec:
rules:
- http:
paths:
# High-throughput batch processing
- path: /batch(/|$)(.*)
pathType: Prefix
backend:
service:
name: vllm-service
port: 8000
# Structured output generation
- path: /structured(/|$)(.*)
pathType: Prefix
backend:
service:
name: tgi-service
port: 8080
# Chat with prefix caching
- path: /chat(/|$)(.*)
pathType: Prefix
backend:
service:
name: sglang-service
port: 30000
Most organizations start with vLLM and add specialized engines as needs emerge.
Next, we'll explore prefix caching and advanced optimization techniques. :::