TensorRT-LLM & GPU Optimization
Blackwell GPU Optimization
3 min read
NVIDIA's Blackwell architecture (2024-2025) introduces significant improvements for LLM inference. This lesson covers optimization strategies specific to B200, GB200, B300, and GB300 GPUs.
Blackwell Architecture Overview
┌─────────────────────────────────────────────────────────────┐
│ Blackwell GPU Features │
├─────────────────────────────────────────────────────────────┤
│ │
│ ┌───────────────────┐ ┌───────────────────────────────┐ │
│ │ 5th Gen Tensor │ │ HBM3e Memory │ │
│ │ Cores │ │ ───────────────────────── │ │
│ │ ───────────── │ │ B200: 192GB @ 8TB/s │ │
│ │ • FP4 support │ │ B300: 288GB @ 10TB/s │ │
│ │ • 2x FP8 perf │ │ GB200: 384GB (2x192GB NVLink)│ │
│ │ • Sparsity 2:4 │ │ │ │
│ └───────────────────┘ └───────────────────────────────┘ │
│ │
│ ┌───────────────────┐ ┌───────────────────────────────┐ │
│ │ NVLink 5.0 │ │ Transformer Engine 2.0 │ │
│ │ ───────────── │ │ ──────────────────────── │ │
│ │ 1.8TB/s GPU-GPU │ │ • Automatic FP4/FP8 select │ │
│ │ Grace-Blackwell │ │ • Dynamic precision scaling │ │
│ │ unified memory │ │ • Optimized attention │ │
│ └───────────────────┘ └───────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────┘
Blackwell GPU Comparison
| Specification | B200 | GB200 | B300 | GB300 |
|---|---|---|---|---|
| HBM3e Memory | 192GB | 384GB | 288GB | 576GB |
| Memory Bandwidth | 8TB/s | 16TB/s | 10TB/s | 20TB/s |
| FP8 TFLOPS | 4,500 | 9,000 | 5,600 | 11,200 |
| FP4 TFLOPS | 9,000 | 18,000 | 11,200 | 22,400 |
| TDP | 1000W | 2700W | 1200W | 3000W |
| Form Factor | SXM | Grace+Blackwell | SXM | Grace+Blackwell |
FP4 Optimization for Blackwell
FP4 is Blackwell's standout feature for LLM inference:
from tensorrt_llm import LLM
from tensorrt_llm.builder import BuildConfig
from tensorrt_llm.quantization import QuantConfig
# Optimal FP4 configuration for Blackwell
quant_config = QuantConfig(
quant_algo="FP4",
kv_cache_quant_algo="FP8",
exclude_modules=["lm_head"], # Keep output layer at higher precision
)
build_config = BuildConfig(
max_input_len=8192,
max_seq_len=32768, # Longer context with FP4 memory savings
max_batch_size=256, # Much larger batches possible
max_num_tokens=32768,
# Blackwell-specific optimizations
use_fp8_context_fmha=True,
use_paged_context_fmha=True,
quant_config=quant_config,
)
# Build for Blackwell
llm = LLM(
model="/models/llama-3.1-405b",
build_config=build_config,
# Enable multi-GPU if needed
tensor_parallel_size=2, # B200 NVLink pair
)
FP4 Memory Benefits
Llama 3.1 405B Memory Requirements:
FP16: 810GB → Requires 6x H100-80GB or 5x B200
FP8: 405GB → Requires 3x H100-80GB or 3x B200
FP4: 203GB → Fits on 2x B200 or 1x GB200
Cost Reduction: ~60% fewer GPUs for same model
GB200 NVLink Domain Optimization
The GB200 Superchip connects 2 Blackwell GPUs with 1.8TB/s NVLink:
# Optimal configuration for GB200
build_config = BuildConfig(
max_input_len=8192,
max_seq_len=65536, # Extended context with 384GB
max_batch_size=512,
# Use NVLink tensor parallelism
tp_size=2, # Both GPUs in GB200
# Maximize memory efficiency
quant_config=QuantConfig(quant_algo="FP4"),
# Enable pipelined prefill/decode
enable_chunked_context=True,
max_chunk_size=8192,
)
Transformer Engine 2.0 Integration
Blackwell's Transformer Engine automatically optimizes precision:
# Enable Transformer Engine optimizations
build_config = BuildConfig(
# ... other settings ...
# Transformer Engine 2.0 features
use_transformer_engine=True,
# Automatic precision selection per layer
# - Attention: FP8 for stability
# - FFN: FP4 for throughput
# - LayerNorm: FP16 for accuracy
mixed_precision_strategy="auto",
)
Multi-Node B200 Configuration
For extremely large models or massive throughput:
# 8x B200 configuration (4-node, 2 GPU per node)
build_config = BuildConfig(
max_batch_size=1024,
max_num_tokens=65536,
# Tensor parallelism within node
tp_size=2,
# Pipeline parallelism across nodes
pp_size=4,
quant_config=QuantConfig(quant_algo="FP4"),
)
# Launch with TensorRT-LLM distributed runner
# Uses NCCL over InfiniBand between nodes
Blackwell Optimization Checklist
- Use FP4 quantization - Native support, 4x memory reduction
- Maximize batch size - Blackwell excels at high throughput
- Enable paged attention - Essential for memory efficiency
- Use chunked prefill - Reduces TTFT for long contexts
- Configure NVLink correctly - Ensure optimal GPU-GPU communication
- Monitor power limits - B200 draws up to 1000W under load
- Test FP4 quality - Validate model accuracy after quantization
Performance Expectations
| Model | GPU Config | Quantization | Throughput | TTFT |
|---|---|---|---|---|
| Llama 3.1 8B | 1x B200 | FP4 | 15,000 tok/s | 12ms |
| Llama 3.1 70B | 1x B200 | FP4 | 3,500 tok/s | 45ms |
| Llama 3.1 405B | 2x B200 | FP4 | 800 tok/s | 120ms |
| Llama 3.1 405B | 1x GB200 | FP4 | 900 tok/s | 100ms |
| ::: |