Kubernetes Foundations for ML
Kubernetes for AI/ML: The 2026 Landscape
4 min read
Kubernetes has become the de facto operating layer for AI-driven services. With 54% adoption for AI/ML workloads and 70%+ of enterprises running large AI systems on Kubernetes, understanding this platform is essential for any ML engineer.
Market Reality
Kubernetes Market Growth
| Metric | 2025 | 2030 | CAGR |
|---|---|---|---|
| Market Size | $2.57B | $7.07B | 22.4% |
| Container Orchestration Share | 92% | 95%+ | - |
| Production Deployment | 80%+ | 90%+ | - |
AI/ML Workload Trends:
- 54% of organizations run AI/ML on Kubernetes (Spectro Cloud 2025)
- 90%+ teams expect ML workload growth in next 12 months
- 45% embedding AI-driven workload balancing
- "Kubernetes AI" search volume increased 300% in 2025
Why Kubernetes Dominates ML
┌────────────────────────────────────────────────────────────────┐
│ ML Platform Requirements │
├────────────────────────────────────────────────────────────────┤
│ Scalability │ Training jobs: 1 → 1000 GPUs │
│ Resource Mgmt │ GPUs, TPUs, high-memory nodes │
│ Reproducibility │ Containerized environments │
│ Multi-tenancy │ Teams share cluster resources │
│ Portability │ On-prem ↔ Cloud ↔ Edge │
│ Ecosystem │ Kubeflow, KServe, MLflow, Airflow │
└────────────────────────────────────────────────────────────────┘
↓
Kubernetes Provides All
Kubernetes Evolution for AI/ML
Key Milestones (2024-2026)
| Version | Release | AI/ML Features |
|---|---|---|
| 1.32 | Dec 2024 | Memory Manager GA |
| 1.33 | Apr 2025 | DRA Beta, In-Place Pod Resize Beta |
| 1.34 | Aug 2025 | DRA GA, OCI Images as Volumes |
| 1.35 | Dec 2025 | KYAML Beta, Enhanced DRA |
Kubernetes 1.34: The AI/ML Milestone
Dynamic Resource Allocation (DRA) GA:
# ResourceClaim for GPU allocation
apiVersion: resource.k8s.io/v1
kind: ResourceClaim
metadata:
name: gpu-claim
spec:
devices:
requests:
- name: gpu
deviceClassName: nvidia-gpu
count: 2
---
# Pod using ResourceClaim
apiVersion: v1
kind: Pod
metadata:
name: training-job
spec:
resourceClaims:
- name: gpu
resourceClaimName: gpu-claim
containers:
- name: trainer
image: my-training-image:latest
resources:
claims:
- name: gpu
Key DRA Benefits:
- Just-in-time GPU/TPU selection and allocation
- Multi-pod device sharing
- Consumable device capacity tracking
- Reduced hardware costs for AI/ML workloads
OCI Images as Volumes:
# Load ML model weights without custom base images
apiVersion: v1
kind: Pod
metadata:
name: inference-server
spec:
containers:
- name: model-server
image: kserve/serving:latest
volumeMounts:
- name: model-weights
mountPath: /models
volumes:
- name: model-weights
image:
reference: myregistry/llama-7b-weights:v1
pullPolicy: IfNotPresent
ML Workload Categories
Training vs Inference
| Aspect | Training | Inference |
|---|---|---|
| Duration | Hours to days | Milliseconds |
| Resources | High GPU, bursty | Consistent, lower |
| Scaling | Job-based | Autoscaling |
| Pattern | Batch | Request-response |
| K8s Resource | Job/CronJob | Deployment/Service |
Kubernetes Resources for ML
Training Pipeline:
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Job │ → │ PersistentVC │ → │ Secret │
│ (Training) │ │ (Data/Model)│ │ (Registry) │
└─────────────┘ └─────────────┘ └─────────────┘
Inference Stack:
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Deployment │ → │ Service │ → │ Ingress │
│ (Model) │ │ (Internal) │ │ (External) │
└─────────────┘ └─────────────┘ └─────────────┘
ML Platform Architecture on Kubernetes
Reference Architecture
┌─────────────────────────────────────────────────────────────────┐
│ ML Platform on Kubernetes │
├─────────────────────────────────────────────────────────────────┤
│ User Layer │ Notebooks │ Pipelines │ Model Registry │
├─────────────────────────────────────────────────────────────────┤
│ ML Layer │ Kubeflow │ MLflow │ KServe │ Feast │
├─────────────────────────────────────────────────────────────────┤
│ Platform Layer │ Istio │ ArgoCD │ Prometheus │
├─────────────────────────────────────────────────────────────────┤
│ Kubernetes Layer │ Scheduler │ DRA │ CNI │ CSI │
├─────────────────────────────────────────────────────────────────┤
│ Infrastructure │ GPU Nodes │ Storage │ Network │
└─────────────────────────────────────────────────────────────────┘
Cloud Provider ML Kubernetes Services
| Feature | EKS | GKE | AKS |
|---|---|---|---|
| GPU Nodes | P4d, P5, G5 | A100, H100, TPU | NC, ND series |
| ML Addon | SageMaker Operators | Vertex AI | Azure ML Extension |
| Autopilot | Karpenter | GKE Autopilot | KEDA |
| AI Conformance | Certified | Certified | Certified |
Next, we'll explore Kubernetes architecture and core concepts essential for ML workloads. :::