CI/CD Fundamentals for ML

Tool Landscape Overview

3 min read

The ML CI/CD ecosystem offers many options. Let's map out the landscape and understand when to use which tool.

The ML CI/CD Tool Stack

┌─────────────────────────────────────────────────────────────────┐
│                    ML CI/CD Tool Stack                          │
├─────────────────────────────────────────────────────────────────┤
│                                                                 │
│  CI/CD Platforms                                                │
│  ├── GitHub Actions      (Most popular for open-source)        │
│  ├── GitLab CI/CD        (Enterprise, integrated DevOps)       │
│  ├── Jenkins             (Self-hosted, highly customizable)    │
│  └── CircleCI/Travis     (Cloud-native, simpler setup)         │
│                                                                 │
│  Data Validation                                                │
│  ├── Great Expectations  (Comprehensive, production-grade)     │
│  ├── Pandera             (Lightweight, pytest-native)          │
│  └── Pydantic            (Type validation for configs)         │
│                                                                 │
│  ML-Specific CI/CD                                              │
│  ├── DVC                 (Data versioning in CI)               │
│  ├── CML                 (ML reports in PRs)                   │
│  └── MLflow              (Experiment tracking integration)     │
│                                                                 │
│  GitOps & Deployment                                            │
│  ├── ArgoCD              (Kubernetes GitOps)                   │
│  ├── Flux                (Alternative to ArgoCD)               │
│  └── Helm                (Kubernetes package manager)          │
│                                                                 │
└─────────────────────────────────────────────────────────────────┘

CI/CD Platform Comparison

Feature GitHub Actions GitLab CI/CD Jenkins
Setup Minimal Minimal Complex
GPU Runners Self-hosted Built-in (paid) Self-hosted
Model Registry Third-party Built-in Third-party
Pricing Free tier + pay Free tier + pay Self-hosted
Secrets Management Built-in Built-in Plugins
Best For Open-source, startups Enterprise Custom requirements

Decision Framework

Choose GitHub Actions When:

  • Open-source project or using GitHub
  • Team is familiar with YAML workflows
  • Need quick setup without infrastructure
  • Want large marketplace of actions
# GitHub Actions: Clean, YAML-based syntax
name: ML Pipeline
on: push
jobs:
  train:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - run: python train.py

Choose GitLab CI/CD When:

  • Enterprise with security requirements
  • Need built-in model registry
  • Want integrated DevOps platform
  • Need GPU runners without self-hosting
# GitLab CI: Similar but with different features
stages:
  - train
  - deploy

train:
  stage: train
  image: python:3.11
  script:
    - python train.py
  tags:
    - saas-linux-medium-amd64-gpu-standard

Choose Jenkins When:

  • Complex custom requirements
  • Existing Jenkins infrastructure
  • Need maximum flexibility
  • On-premise deployment required
// Jenkins: Groovy-based, more verbose
pipeline {
    agent any
    stages {
        stage('Train') {
            steps {
                sh 'python train.py'
            }
        }
    }
}

Data Validation Tool Comparison

Feature Great Expectations Pandera
Complexity Full framework Lightweight
Learning Curve Steeper Gentle
pytest Integration Plugin Native
Data Docs Built-in HTML No
Use Case Production pipelines Development/testing

Great Expectations: Production-Grade

import great_expectations as gx

context = gx.get_context()
batch = context.get_batch(data_asset_name="users")

# Comprehensive expectations
result = batch.expect_column_values_to_be_between(
    column="age",
    min_value=0,
    max_value=120
)

Pandera: Lightweight Testing

import pandera as pa

schema = pa.DataFrameSchema({
    "age": pa.Column(int, pa.Check.between(0, 120)),
    "email": pa.Column(str, pa.Check.str_matches(r".*@.*")),
})

# Use in tests
@pa.check_types
def process_users(df: pa.typing.DataFrame[schema]) -> pd.DataFrame:
    return df

ML-Specific Tools

DVC + CML: The Iterative Ecosystem

Tool Purpose CI/CD Integration
DVC Data/model versioning dvc pull in pipelines
CML ML reporting Comments on PRs
# Combined DVC + CML workflow
- name: Pull data
  run: dvc pull

- name: Train and report
  run: |
    python train.py
    cml comment create report.md

MLflow in CI/CD

- name: Track experiment
  run: |
    mlflow run . --experiment-name "ci-training"
  env:
    MLFLOW_TRACKING_URI: ${{ secrets.MLFLOW_URI }}

GitOps Tools for ML

Tool Focus Best For
ArgoCD Application deployment Kubernetes-native teams
Flux GitOps toolkit Smaller clusters
Helm Package management Complex deployments

Startup Stack

GitHub Actions + DVC + CML + Pandera + Basic Kubernetes
  • Low cost, quick setup
  • Good for < 10 models

Growth Stack

GitHub Actions + DVC + CML + Great Expectations + ArgoCD
  • Production-ready validation
  • GitOps deployment

Enterprise Stack

GitLab CI/CD + DVC + Great Expectations + MLflow + ArgoCD
  • Full governance
  • Audit trails
  • Model registry

Tool Selection Checklist

Before choosing, ask:

Question Impact
Where is our code hosted? GitHub → Actions, GitLab → CI/CD
Do we need GPU runners? Self-hosted or GitLab paid
How complex is our validation? Simple → Pandera, Complex → GX
Are we on Kubernetes? Yes → ArgoCD/Flux
What's our team size? Larger → More governance

Key Insight: Start simple. You can always add tools as complexity grows. Don't over-engineer your CI/CD from day one.

In the next module, we'll deep-dive into GitHub Actions for ML workflows. :::

Quiz

Module 1: CI/CD Fundamentals for ML

Take Quiz