CI/CD Fundamentals for ML
Tool Landscape Overview
3 min read
The ML CI/CD ecosystem offers many options. Let's map out the landscape and understand when to use which tool.
The ML CI/CD Tool Stack
┌─────────────────────────────────────────────────────────────────┐
│ ML CI/CD Tool Stack │
├─────────────────────────────────────────────────────────────────┤
│ │
│ CI/CD Platforms │
│ ├── GitHub Actions (Most popular for open-source) │
│ ├── GitLab CI/CD (Enterprise, integrated DevOps) │
│ ├── Jenkins (Self-hosted, highly customizable) │
│ └── CircleCI/Travis (Cloud-native, simpler setup) │
│ │
│ Data Validation │
│ ├── Great Expectations (Comprehensive, production-grade) │
│ ├── Pandera (Lightweight, pytest-native) │
│ └── Pydantic (Type validation for configs) │
│ │
│ ML-Specific CI/CD │
│ ├── DVC (Data versioning in CI) │
│ ├── CML (ML reports in PRs) │
│ └── MLflow (Experiment tracking integration) │
│ │
│ GitOps & Deployment │
│ ├── ArgoCD (Kubernetes GitOps) │
│ ├── Flux (Alternative to ArgoCD) │
│ └── Helm (Kubernetes package manager) │
│ │
└─────────────────────────────────────────────────────────────────┘
CI/CD Platform Comparison
| Feature | GitHub Actions | GitLab CI/CD | Jenkins |
|---|---|---|---|
| Setup | Minimal | Minimal | Complex |
| GPU Runners | Self-hosted | Built-in (paid) | Self-hosted |
| Model Registry | Third-party | Built-in | Third-party |
| Pricing | Free tier + pay | Free tier + pay | Self-hosted |
| Secrets Management | Built-in | Built-in | Plugins |
| Best For | Open-source, startups | Enterprise | Custom requirements |
Decision Framework
Choose GitHub Actions When:
- Open-source project or using GitHub
- Team is familiar with YAML workflows
- Need quick setup without infrastructure
- Want large marketplace of actions
# GitHub Actions: Clean, YAML-based syntax
name: ML Pipeline
on: push
jobs:
train:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- run: python train.py
Choose GitLab CI/CD When:
- Enterprise with security requirements
- Need built-in model registry
- Want integrated DevOps platform
- Need GPU runners without self-hosting
# GitLab CI: Similar but with different features
stages:
- train
- deploy
train:
stage: train
image: python:3.11
script:
- python train.py
tags:
- saas-linux-medium-amd64-gpu-standard
Choose Jenkins When:
- Complex custom requirements
- Existing Jenkins infrastructure
- Need maximum flexibility
- On-premise deployment required
// Jenkins: Groovy-based, more verbose
pipeline {
agent any
stages {
stage('Train') {
steps {
sh 'python train.py'
}
}
}
}
Data Validation Tool Comparison
| Feature | Great Expectations | Pandera |
|---|---|---|
| Complexity | Full framework | Lightweight |
| Learning Curve | Steeper | Gentle |
| pytest Integration | Plugin | Native |
| Data Docs | Built-in HTML | No |
| Use Case | Production pipelines | Development/testing |
Great Expectations: Production-Grade
import great_expectations as gx
context = gx.get_context()
batch = context.get_batch(data_asset_name="users")
# Comprehensive expectations
result = batch.expect_column_values_to_be_between(
column="age",
min_value=0,
max_value=120
)
Pandera: Lightweight Testing
import pandera as pa
schema = pa.DataFrameSchema({
"age": pa.Column(int, pa.Check.between(0, 120)),
"email": pa.Column(str, pa.Check.str_matches(r".*@.*")),
})
# Use in tests
@pa.check_types
def process_users(df: pa.typing.DataFrame[schema]) -> pd.DataFrame:
return df
ML-Specific Tools
DVC + CML: The Iterative Ecosystem
| Tool | Purpose | CI/CD Integration |
|---|---|---|
| DVC | Data/model versioning | dvc pull in pipelines |
| CML | ML reporting | Comments on PRs |
# Combined DVC + CML workflow
- name: Pull data
run: dvc pull
- name: Train and report
run: |
python train.py
cml comment create report.md
MLflow in CI/CD
- name: Track experiment
run: |
mlflow run . --experiment-name "ci-training"
env:
MLFLOW_TRACKING_URI: ${{ secrets.MLFLOW_URI }}
GitOps Tools for ML
| Tool | Focus | Best For |
|---|---|---|
| ArgoCD | Application deployment | Kubernetes-native teams |
| Flux | GitOps toolkit | Smaller clusters |
| Helm | Package management | Complex deployments |
Recommended Tool Stacks
Startup Stack
GitHub Actions + DVC + CML + Pandera + Basic Kubernetes
- Low cost, quick setup
- Good for < 10 models
Growth Stack
GitHub Actions + DVC + CML + Great Expectations + ArgoCD
- Production-ready validation
- GitOps deployment
Enterprise Stack
GitLab CI/CD + DVC + Great Expectations + MLflow + ArgoCD
- Full governance
- Audit trails
- Model registry
Tool Selection Checklist
Before choosing, ask:
| Question | Impact |
|---|---|
| Where is our code hosted? | GitHub → Actions, GitLab → CI/CD |
| Do we need GPU runners? | Self-hosted or GitLab paid |
| How complex is our validation? | Simple → Pandera, Complex → GX |
| Are we on Kubernetes? | Yes → ArgoCD/Flux |
| What's our team size? | Larger → More governance |
Key Insight: Start simple. You can always add tools as complexity grows. Don't over-engineer your CI/CD from day one.
In the next module, we'll deep-dive into GitHub Actions for ML workflows. :::