Security Testing & Next Steps
Staying Current
2 min read
AI security evolves rapidly. New attack techniques emerge weekly, and defenses must keep pace. This lesson covers resources, communities, and strategies for staying current.
Why Continuous Learning Matters
┌─────────────────────────────────────────────────────────────┐
│ AI Security Timeline │
│ │
│ 2023 Q1: First major prompt injection papers │
│ 2023 Q2: Bing Chat jailbreaks go viral │
│ 2023 Q3: Indirect injection attacks documented │
│ 2023 Q4: OWASP LLM Top 10 v1.0 released │
│ 2024 Q1: Multimodal injection attacks emerge │
│ 2024 Q2: Advanced jailbreak techniques proliferate │
│ 2024 Q3: AI agents introduce new attack surfaces │
│ 2024 Q4: OWASP LLM Top 10 v2025 released │
│ 2025 Q1: ? (New attacks emerge constantly) │
│ │
│ Your defenses from 6 months ago may be obsolete today │
└─────────────────────────────────────────────────────────────┘
Essential Resources
Official Standards & Guidelines
| Resource | Description | URL |
|---|---|---|
| OWASP LLM Top 10 | Authoritative vulnerability list | genai.owasp.org/llm-top-10 |
| NIST AI RMF | Risk management framework | ai.nist.gov |
| MITRE ATLAS | AI attack framework | atlas.mitre.org |
| EU AI Act | Regulatory requirements | digital-strategy.ec.europa.eu |
Security Research & News
| Resource | Focus Area |
|---|---|
| Lakera Blog | Prompt injection, LLM security |
| Simon Willison's Blog | Practical AI security insights |
| The Gradient | AI/ML research summaries |
| AI Safety Newsletter | Weekly safety updates |
| r/MachineLearning | Community discussions |
Tools & Frameworks
| Tool | Purpose |
|---|---|
| NeMo Guardrails | Production guardrails |
| LLaMA Guard | Safety classification |
| Garak | LLM vulnerability scanner |
| Rebuff | Prompt injection detection |
| LangChain Security | Framework-level security |
Building Your Learning Routine
from dataclasses import dataclass
from typing import List
from enum import Enum
class Frequency(Enum):
DAILY = "daily"
WEEKLY = "weekly"
MONTHLY = "monthly"
@dataclass
class LearningActivity:
name: str
frequency: Frequency
time_minutes: int
sources: List[str]
# Recommended learning routine
learning_routine = [
LearningActivity(
name="News & Alerts",
frequency=Frequency.DAILY,
time_minutes=15,
sources=[
"OWASP announcements",
"Security researcher Twitter/X",
"AI safety RSS feeds",
]
),
LearningActivity(
name="Deep Dives",
frequency=Frequency.WEEKLY,
time_minutes=60,
sources=[
"New attack technique papers",
"Tool documentation updates",
"Security blog posts",
]
),
LearningActivity(
name="Hands-On Practice",
frequency=Frequency.WEEKLY,
time_minutes=120,
sources=[
"CTF challenges",
"Red team practice",
"Tool experimentation",
]
),
LearningActivity(
name="Standards Review",
frequency=Frequency.MONTHLY,
time_minutes=60,
sources=[
"OWASP updates",
"NIST guidelines",
"Industry reports",
]
),
]
def calculate_weekly_time(routine: List[LearningActivity]) -> int:
"""Calculate total weekly learning time."""
weekly_minutes = 0
for activity in routine:
if activity.frequency == Frequency.DAILY:
weekly_minutes += activity.time_minutes * 5 # Weekdays
elif activity.frequency == Frequency.WEEKLY:
weekly_minutes += activity.time_minutes
elif activity.frequency == Frequency.MONTHLY:
weekly_minutes += activity.time_minutes / 4
return round(weekly_minutes)
total_weekly = calculate_weekly_time(learning_routine)
print(f"Recommended weekly learning: {total_weekly} minutes ({total_weekly/60:.1f} hours)")
Tracking New Threats
Setting Up Alerts
# RSS feeds to monitor
SECURITY_FEEDS = [
"https://genai.owasp.org/feed/",
"https://www.lakera.ai/blog/rss.xml",
"https://simonwillison.net/atom/everything/",
"https://lilianweng.github.io/index.xml",
]
# Keywords to track
ALERT_KEYWORDS = [
"prompt injection",
"jailbreak",
"LLM vulnerability",
"AI safety",
"guardrails bypass",
"model extraction",
"training data leak",
]
# Set up Google Alerts or similar for these terms
def generate_alert_queries() -> List[str]:
"""Generate search queries for alerts."""
queries = []
for keyword in ALERT_KEYWORDS:
queries.append(f'"{keyword}" site:arxiv.org OR site:github.com')
queries.append(f'"{keyword}" (CVE OR vulnerability OR attack)')
return queries
Vulnerability Tracking
from datetime import datetime, timedelta
from typing import Optional
@dataclass
class VulnerabilityNote:
id: str
name: str
discovered: datetime
severity: str
affects_your_stack: bool
mitigation_status: str
notes: str
class SecurityTracker:
"""Track security developments relevant to your stack."""
def __init__(self):
self.vulnerabilities: List[VulnerabilityNote] = []
self.stack_components = []
def add_component(self, component: str):
"""Track a component in your stack."""
self.stack_components.append(component)
def log_vulnerability(self, vuln: VulnerabilityNote):
"""Log a new vulnerability."""
self.vulnerabilities.append(vuln)
def get_unmitigated(self) -> List[VulnerabilityNote]:
"""Get vulnerabilities without mitigation."""
return [
v for v in self.vulnerabilities
if v.mitigation_status != "mitigated" and v.affects_your_stack
]
def weekly_report(self) -> str:
"""Generate weekly security report."""
week_ago = datetime.now() - timedelta(days=7)
recent = [
v for v in self.vulnerabilities
if v.discovered > week_ago
]
report = f"# Weekly Security Report\n\n"
report += f"## New Vulnerabilities: {len(recent)}\n\n"
for vuln in recent:
report += f"- **{vuln.name}** ({vuln.severity})\n"
report += f" - Affects you: {vuln.affects_your_stack}\n"
report += f" - Status: {vuln.mitigation_status}\n\n"
unmitigated = self.get_unmitigated()
if unmitigated:
report += f"## Action Required: {len(unmitigated)} unmitigated\n"
return report
# Usage
tracker = SecurityTracker()
tracker.add_component("OpenAI GPT-4")
tracker.add_component("NeMo Guardrails")
tracker.add_component("LangChain")
# Log new vulnerability
tracker.log_vulnerability(VulnerabilityNote(
id="2025-001",
name="New indirect injection vector",
discovered=datetime.now(),
severity="high",
affects_your_stack=True,
mitigation_status="investigating",
notes="Affects RAG systems with web scraping"
))
print(tracker.weekly_report())
Community Involvement
| Activity | Benefit |
|---|---|
| Join OWASP | Access to latest standards, networking |
| Attend conferences | DEF CON AI Village, AI security summits |
| Contribute to open source | Hands-on experience, visibility |
| Share your findings | Build reputation, help community |
| Join Discord/Slack | Real-time discussions, early warnings |
Key Takeaway: AI security is a moving target. Dedicate regular time to learning, set up alerts for new threats, and engage with the community to stay ahead of attackers. :::