Real-World Case Studies
lesson-03
5 min read
Learn how a development team used AI agents to integrate a complex enterprise ecosystem with multiple legacy systems.
Project Overview
Company: GlobalCorp Financial Services Challenge: Integrate 12 disparate systems into a unified data platform Timeline: 4 months (reduced from 14 months estimate) Team: 6 developers + AI agents Systems: SAP, Salesforce, Oracle DB, custom mainframe, 8 microservices
The Integration Landscape
Integration Requirements:
├── SAP ERP (Financial data)
├── Salesforce CRM (Customer data)
├── Oracle Database (Legacy transactions)
├── IBM Mainframe (Core banking)
├── 5 REST APIs (Modern services)
├── 3 SOAP services (Legacy services)
├── File-based feeds (Daily batches)
└── Real-time event streams (Kafka)
Phase 1: Discovery and Mapping
AI-Powered System Analysis
# Claude Code analyzing API documentation
claude "Analyze these API specifications and create:
1. A unified data model mapping
2. Entity relationship diagrams
3. Data transformation requirements
4. Conflict resolution strategies
5. Integration sequence diagrams"
Generated Integration Map
// AI-generated unified schema
// src/schemas/unified-customer.ts
export interface UnifiedCustomer {
// Canonical ID (generated)
id: string;
// Source system references
sourceIds: {
salesforce?: string; // Salesforce Account ID
sap?: string; // SAP Customer Number
oracle?: string; // Oracle CUST_ID
mainframe?: string; // Mainframe CIF
};
// Unified fields with source tracking
profile: {
name: string;
source: 'salesforce' | 'sap'; // Golden source
lastUpdated: Date;
};
financials: {
creditLimit: number;
source: 'sap' | 'mainframe';
lastUpdated: Date;
};
// Conflict resolution metadata
conflicts: ConflictRecord[];
// Audit trail
integrationHistory: IntegrationEvent[];
}
// Transformation rules
export const transformationRules: TransformationConfig = {
customer_name: {
sources: ['salesforce.Name', 'sap.NAME1', 'oracle.CUSTOMER_NAME'],
priority: ['salesforce', 'sap', 'oracle'],
transform: (values) => values.salesforce || values.sap || values.oracle,
conflictStrategy: 'highest_priority'
},
credit_limit: {
sources: ['sap.CREDIT_LIMIT', 'mainframe.CRLM'],
priority: ['sap', 'mainframe'],
transform: (values) => Math.max(values.sap || 0, values.mainframe || 0),
conflictStrategy: 'maximum_value'
}
};
Phase 2: Adapter Development
Multi-Agent Adapter Creation
The team assigned different AI agents to build system-specific adapters:
# Agent assignment matrix
adapters:
salesforce:
agent: claude-code-1
complexity: medium
auth: oauth2
protocol: rest
sap:
agent: cursor-1
complexity: high
auth: basic + certificates
protocol: rfc + odata
mainframe:
agent: devin
complexity: very_high
auth: custom
protocol: mq + file
oracle:
agent: cursor-2
complexity: medium
auth: wallet
protocol: jdbc
SAP Adapter Example
// src/adapters/sap/customer-adapter.ts
// Generated by Claude Code with human refinement
import { SapRfcClient } from '@anthropic/sap-rfc';
import { UnifiedCustomer, transformationRules } from '@/schemas';
export class SapCustomerAdapter implements ICustomerAdapter {
private client: SapRfcClient;
constructor(config: SapConfig) {
this.client = new SapRfcClient({
ashost: config.host,
sysnr: config.systemNumber,
client: config.client,
user: config.user,
passwd: config.password,
lang: 'EN'
});
}
async fetchCustomer(sapNumber: string): Promise<UnifiedCustomer> {
// Call SAP RFC function
const result = await this.client.call('BAPI_CUSTOMER_GETDETAIL2', {
CUSTOMERNO: sapNumber
});
// Transform SAP structure to unified model
return this.transformToUnified(result);
}
async fetchCustomersBatch(
criteria: SearchCriteria
): Promise<UnifiedCustomer[]> {
// Use SAP OData for bulk queries
const odataClient = this.createODataClient();
const response = await odataClient
.get('/sap/opu/odata/sap/API_BUSINESS_PARTNER/A_Customer')
.filter(this.buildFilter(criteria))
.select(['Customer', 'CustomerName', 'CreditLimit'])
.top(1000)
.execute();
return response.value.map(this.transformToUnified);
}
private transformToUnified(sapData: SapCustomerData): UnifiedCustomer {
return {
id: generateCanonicalId('sap', sapData.CUSTOMERNO),
sourceIds: {
sap: sapData.CUSTOMERNO
},
profile: {
name: sapData.NAME1,
source: 'sap',
lastUpdated: new Date()
},
financials: {
creditLimit: parseFloat(sapData.CREDIT_LIMIT) || 0,
source: 'sap',
lastUpdated: new Date()
},
conflicts: [],
integrationHistory: [{
timestamp: new Date(),
source: 'sap',
action: 'fetch',
success: true
}]
};
}
}
Mainframe Adapter (Devin-Generated)
// src/adapters/mainframe/customer-adapter.ts
// Generated by Devin with autonomous testing
import { MQClient } from '@/lib/mq';
import { parseEbcdic, formatEbcdic } from '@/lib/ebcdic';
export class MainframeCustomerAdapter implements ICustomerAdapter {
private mqClient: MQClient;
private requestQueue: string;
private responseQueue: string;
async fetchCustomer(cif: string): Promise<UnifiedCustomer> {
// Build COBOL-compatible request
const request = this.buildCicsRequest({
transactionId: 'CUST',
operation: 'INQ',
customerCif: cif.padStart(10, '0')
});
// Send to mainframe via MQ
const correlationId = await this.mqClient.put(
this.requestQueue,
formatEbcdic(request)
);
// Wait for response with timeout
const response = await this.mqClient.get(
this.responseQueue,
{ correlationId, timeout: 30000 }
);
// Parse EBCDIC response
const parsed = parseEbcdic(response, CUSTOMER_COPYBOOK);
return this.transformToUnified(parsed);
}
private buildCicsRequest(params: CicsParams): Buffer {
// Fixed-length COBOL record format
const buffer = Buffer.alloc(200);
buffer.write(params.transactionId, 0, 4);
buffer.write(params.operation, 4, 3);
buffer.write(params.customerCif, 7, 10);
// ... additional fields per copybook
return buffer;
}
}
Phase 3: Orchestration Layer
Event-Driven Integration Hub
// src/orchestration/integration-hub.ts
import { Kafka, Consumer, Producer } from 'kafkajs';
import { AdapterRegistry } from '@/adapters';
import { ConflictResolver } from '@/resolution';
export class IntegrationHub {
private kafka: Kafka;
private adapters: AdapterRegistry;
private conflictResolver: ConflictResolver;
async processCustomerEvent(event: IntegrationEvent) {
const { sourceSystem, entityId, eventType } = event;
// Fetch from source system
const sourceAdapter = this.adapters.get(sourceSystem);
const sourceData = await sourceAdapter.fetchCustomer(entityId);
// Fetch from all other systems for comparison
const allSystemData = await this.fetchFromAllSystems(
sourceData.sourceIds
);
// Resolve conflicts using AI-assisted rules
const resolved = await this.conflictResolver.resolve(
allSystemData,
sourceData
);
// Publish unified record
await this.publishUnifiedRecord(resolved);
// Sync back to systems if needed
if (resolved.requiresSync) {
await this.syncToSystems(resolved);
}
}
private async fetchFromAllSystems(
sourceIds: SourceIds
): Promise<SystemDataMap> {
const fetchPromises = Object.entries(sourceIds)
.filter(([_, id]) => id != null)
.map(async ([system, id]) => {
const adapter = this.adapters.get(system as SystemType);
try {
const data = await adapter.fetchCustomer(id!);
return [system, { success: true, data }];
} catch (error) {
return [system, { success: false, error }];
}
});
const results = await Promise.all(fetchPromises);
return Object.fromEntries(results);
}
}
AI-Assisted Conflict Resolution
// src/resolution/ai-resolver.ts
import Anthropic from '@anthropic-ai/sdk';
export class AIConflictResolver {
private anthropic: Anthropic;
async resolveComplexConflict(
conflict: DataConflict
): Promise<ResolutionDecision> {
// For complex conflicts, use AI analysis
const response = await this.anthropic.messages.create({
model: 'claude-sonnet-4-20250514',
max_tokens: 1024,
messages: [{
role: 'user',
content: `Analyze this data conflict and recommend resolution:
Source Systems:
${JSON.stringify(conflict.sourceData, null, 2)}
Conflict Type: ${conflict.type}
Field: ${conflict.field}
Business Rules: ${JSON.stringify(conflict.rules)}
Provide:
1. Recommended resolution
2. Confidence score (0-1)
3. Reasoning
4. Data quality indicators`
}]
});
return this.parseResolutionResponse(response);
}
}
Phase 4: Testing and Validation
AI-Generated Test Suites
// tests/integration/customer-sync.test.ts
// Generated by Claude Code based on integration requirements
describe('Customer Integration Sync', () => {
describe('Cross-System Consistency', () => {
it('should maintain data consistency across SAP and Salesforce', async () => {
// Create customer in Salesforce
const sfCustomer = await salesforce.createCustomer({
Name: 'Test Corp',
BillingCity: 'New York'
});
// Trigger integration
await integrationHub.syncCustomer(sfCustomer.Id);
// Verify SAP received the data
const sapCustomer = await sap.getCustomerBySalesforceId(sfCustomer.Id);
expect(sapCustomer).toBeDefined();
expect(sapCustomer.NAME1).toBe('Test Corp');
expect(sapCustomer.CITY1).toBe('New York');
});
it('should resolve conflicts using priority rules', async () => {
// Set different credit limits in SAP and mainframe
await sap.updateCreditLimit('CUST001', 50000);
await mainframe.updateCreditLimit('CUST001', 75000);
// Trigger reconciliation
const unified = await integrationHub.reconcileCustomer('CUST001');
// Should use maximum value strategy
expect(unified.financials.creditLimit).toBe(75000);
expect(unified.conflicts).toHaveLength(1);
expect(unified.conflicts[0].resolution).toBe('maximum_value');
});
});
describe('Error Handling', () => {
it('should handle mainframe timeout gracefully', async () => {
// Simulate mainframe delay
jest.spyOn(mainframeAdapter, 'fetchCustomer')
.mockImplementation(() => new Promise((_, reject) =>
setTimeout(() => reject(new Error('Timeout')), 35000)
));
const result = await integrationHub.fetchWithFallback('CUST001');
// Should return partial data from available systems
expect(result.sourceIds.mainframe).toBeUndefined();
expect(result.sourceIds.sap).toBeDefined();
expect(result.partialData).toBe(true);
});
});
});
Results and Impact
Project Metrics
| Metric | Traditional | With AI Agents |
|---|---|---|
| Timeline | 14 months | 4 months |
| Developer Hours | 12,000 | 4,200 |
| Adapters Built | 12 | 12 |
| Test Coverage | 45% | 89% |
| Post-Launch Issues | ~50 | 8 |
Integration Performance
Daily Transaction Volume: 2.4M records
Average Latency: 145ms (real-time)
Batch Processing: 500K records/hour
Error Rate: 0.02%
Conflict Resolution: 99.7% automated
Key Learnings
Success Factors
- Parallel Adapter Development: Each AI agent worked on different system
- AI Conflict Resolution: Handled edge cases humans would miss
- Automated Testing: AI generated comprehensive test scenarios
- Documentation: AI maintained up-to-date integration docs
Challenges and Solutions
| Challenge | Solution |
|---|---|
| Legacy protocol complexity | Devin for autonomous exploration |
| Data format inconsistencies | AI-generated transformation rules |
| Performance bottlenecks | AI-optimized query patterns |
| Security requirements | Human review of all auth code |
Architecture Principles Established
## Integration Guidelines
1. **Canonical Data Model**: All systems map to unified schema
2. **Event-Driven Sync**: Changes propagate via Kafka events
3. **Conflict Resolution**: Automated with AI fallback
4. **Audit Trail**: Every transformation logged
5. **Graceful Degradation**: Partial data on system failures
6. **Human Escalation**: Complex conflicts flag for review
:::